
Error propagation in extended chaotic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 4533

(http://iopscience.iop.org/0305-4470/28/16/011)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 27 (1995) 4533-4541. PrinIed in  the UK 

Error propagation in extended chaotic systems 

Alessandro Torcinit, Peter Grasshergert and Antonio Politis 
t Theoretische Physik. Bergische Universi~t-Gesamthoehschule Wuppertal. D42097 Wuppertal, 
Germany 
f IStiNto Nazionale di Ottica and I”, 1.50125 Firem, M y  

Received 9 May 1995 

Abstract. A svong analogy is found between the evolution of localized disturbances in 
extended chaotic systems and the propagation of fronts separating different phases. A condition 
for the evolution to be controlled by nonlinear mechanisms is derived on the basis of this 
relationship. An approximate expression for the nonlinear velocity is also determined by 
extending the concept of the Lyapunov exponent to a growth rate of finite perturbatioos. 

In recent years the study of front propagation in spatially extended systems has known 
a renewed interest, due to the relevance of spreading fronts for the emergence of spatial 
structures (patterns) in non-equilibrium systems [l]. In particular, simple reaction-diffusion 
models seem to be appropriate for describing propagation phenomena in different fields, such 
as fluid dynamics, liquid crystals [2], epidemics [3], chemical reactions, crystal growth [4] 
and biological aggregation [5]. Several mathematical models which describe the spreading 
of a disturbance into unstable (or metastable) steady states have been studied in detail, in 
order to uncover the mechanisms underlying the propagation of fronts 16-91. 

The main result of these studies can be summarized with reference to the one 
dimensional equation 

U t  = U,, + s(u) (1) 
where g(u) E C’[O, 11, g(0) = g(1) = 0. If g > 0 in (0, l), then U = 0 is an unstable fixed 
point, while U = 1 is a stable one. In this case, any sufficiently localized initial perturbation 
u ( x ,  r = 0) generates a propagating kont joining the unstable to the stable state (figure 1). 
A linear stability analysis shows that the front can have any speed VF larger than a minimal 
value uL which depends on the behaviour of g(u) at U = 0. However, very often velocities 
larger than UL require special initial conditions to be realized, so that the ‘physical’ speed is 
exactly uF = uL. In the following we shall call UL the linear velocily. Whether it is selected 
or not depends on the behaviour of g(u) for U > 0. In particular, it has been shown in [lo] 
that convexity of g(u) is sufficient for UF = UL. Intuitively, we can say that, ifg’(0) > g‘(u) 
for all U > 0, the front is ‘pulled‘ by the initial growth of U and, otherwise, it is ‘pushed’ 
by the faster growth of finite U [l l] .  

In the present paper we consider a different problem, namely the propagation of some 
perturbation in a chaotic system (figure 2). Thus the front does not separate two different 
phases, since the system is chaotic (and hence unstable) on both sides of the front. More 
precisely, we consider two realizations of a one-dimensional coupled map lattice (CW) [12] 
which differ only locally in the initial conditions, and we watch the spreading of the relative 
deviation. In spite of the obvious difference with the situation discussed above, we will show 
that there are surprising similarities. In particular, the derivative g’(u = 0) will be replaced 
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Figure 1. A rypical front connecting an unstable with a stable region. 
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Figure 2. A typical chaotic sfate (x). a permrbed state ( y ) .  and their difference. The Front 
separates the pemrbed from the not yet permrbed region. 

by the Lyapunov exponent. In order to formulate (heuristically) a condition equivalent to 
g‘(0) > g’(u), we will introduce a new indicator of the sensitivity to finite perturbations. 
We shall see that there exists again a minimal velocity UL, and that the ‘physical’ velocity 
UF can be larger that UL only if this indicator grows with the perturbation. 

The CML is written as 

where i and n indicate the discrete space and time variables, and E the diffusive coupling 
parameter. We use periodic boundary conditions on a chain of length L, XI = x ! ! ! ~ .  The 
function f ( x )  is assumed to be a map of some interval into itself. We have chosen this 
for numerical convenience. We are confident that the basic features can be generalized to 
continuous systems. Disturbances spreading with uF > uL in CMLS have been observed for 
the first time in 1131. Here, instead of considering the map C ( x )  studied in 1131, we shall 
discuss two simpler examples: the ‘generalized Bemoulli shift’ 

f(x) = r x  mod 1 (4) 
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f ( x )  = (x +'U) mod 1. (5) 

The propagation of infinitesimal disturbances is governed by the evolution in tangent space: 

'i n+l = f'(iY)[(l -&)U1 + i&(U;+, + u y - l ) ]  (6) 

where f' = dfjdx. Instead of considering an initially localized perturbation, we shall first 
refer to a penurbation decaying exponentially for i + CO, 
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and the circle map 

-e-@'. (7) 
Its temporal growth depends on p, 

eA(!4-!", 

The position of the front is defined as the rightmost site where U; is larger than some 
arbitrarily fixed constant O(1). This gives for its velocity 

For an absolutely unstable system we have h(p = 0) > Ot, so that V(p) diverges for 
p + 0. This is intuitively obvious: an almost flat front will appear to move with arbitrarily 
large velocity. On the other hand, it can be shown [14] that, for nearest-neighbour coupling, 
V(p)  --+ 1 for p + 00. 

We now want to determine the speed U L  when the initial perturbation is localized near 
i = 0 and still infinitesimal (the case of finite perturbations will be discussed later). Since 
we expect that any front will have a leading edge where it is infinitesimal and exponentially 
decaying with some exponent po, we have U L  = V(h0). 

To determine po and UL, we need the (maximal) co-moving Lyapunov exponent A(u) 
[15]. For a given U, this gives the local growth rate of a disturbance in a reference frame 
moving with velocity U, U: - e"@)" if i~ = un. The selected front speed is such that a 
disturbance neither grows nor decreases at U L ,  i.e. A(uL) = 0. In order to express this 
in terms of h ( p )  and p, we recall that they are related to h ( u )  through the Legendre 
transformation [16,17] 

Therefore, the derivative of V(p) is'directly related to the co-moving exponent; 

(11) 

Using A(uL) = 0, we now see that dV/dp = 0 at a value po for which U(&) = UL,  and 
since A(u) is convex (being a Legendre transform), this will be the unique minimum of 
V(p). Finally, we can write 

Thus as long as we can consider a perturbation as infinitesimal, it is the lowest possible 
speed which is selected, which justifies us calling it the 'linear velocity'. 

t Throughout this paper, all~Lyapunov exponents are maximal ones, and all perturbations are assumed to be typical 
so that they grow with maximal rate. There exist of course also atypical perturbations the growth of which is 
governed by non-leading Lyapunov exponents [14], but they will be neglected. 
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This expression for UL is identical to that found in [8] for the propagation into unstable 
steady states, provided that A(p) and p are identified with the complex part of the frequency 
and of the wavevector, respectively. Thus, the relation A = A(p)  plays essentially the role 
of a dispersion relation [14, 171. 

Recalling that for closed systems, A(u) is always a decreasing function (limiting us to 
U > 0 for symmetry reasons) and that A(u = 0) = A(0) [U], we can readily deduce from 
equation (12) that UL is defined if and only if the system is absolutely unstable, i.e. A(0) > 0. 
As can be seen from figure 3, V ( p )  steadily increases with p and V ( p  + 0) + -CO if the 
local dynamics is not chaotic (A(0) < 0). A negative velocity indicates that the perturbation 
regresses instead of propagating: the system is absolutely stable. 

Figure 3. Velocities V Q  against LL for the coupled piecewise linear m p s  (4) with E = 1/3. 
The full curve refers to the absolutely unstable sihlation (r > I), the broken c u e  to the 
marginally stable case (r = 1) and the dash-dotted one to the absolutely stable case (r c 1). 

Finally, we consider localized and~jinite initial perturbations. We call the corresponding 
front velocity UF. Since any front will have an infinitesimal leading edge, we have to expect 
that UF = V(p*) for some value p*. It is hard to see how pa could be smaller than PO, 
whence we just have to distinguish two possibilities: the ‘linear’ (or ‘pulled’) case with 
p* = &o and UF = UL, and the ‘nonlinear’ (or ‘pushed’) case with p* > go, up > UL. 

In order to see which case is realized in a particular model, we simulate two chaotic 
configurations {xi”)  and [y)) initially differing in a l i i t ed  region of the chain (typically 
50 sites in chains of > 1024 sites) and coinciding elsewhere. The front position after n 
iterations is defined as 

R(n)  = max{i : Ix) - yyl 2 0 )  (13) 
where 8 is a preassigned threshold << 1. The front velocity is then defined as 

We have verified that U F  is independent of the amplitude of the initial perturbation 60 and 
of the value of the threshold e when they are varied from 

In this way we measured UF and UL for several CML models and couplings. As expected, 
we found always UF 2 UL. In most cases, UF = UL (this was found for logistic, cubic and tent 
coupled maps for al l  tested values of the parameters and of E),  but we have also identified 

to lo-’. 



Error propagation in extended chaotic systems 4537 

a class of maps (namely, models (4). (5) and the map G studied in [13]) where the seict 
inequality UF > UL is found to hold. The common characteristic of these maps is that 
f'(x) exhibits a narrow peak (or even a &-singularity). Moreover, in system (4) [18] and in 
[131 a transition between the two above regimes is found upon varying a parameter of the 
map. For map (3, such a transition cannot occur since UL is always zero, the map being 
marginally stable. However, also in this case we can observe a finite UF for a range of U 
and E values. This fact stresses even more that this propagation mechanism is not related to 
local chaoticity, i.e. to sensitive dependence on local  and^ infinitesimal perturbations. The 
unpredictability resulting from the spreading of perturbations does not result here from local 
production of entropy but from entropy transport 

The shape of the moving front has been determined with an accurate average over 
successive realizations of the front itself, following its evolution along the chain. In the 
leading edge its asymptotic shape is well approximated by an exponential, with a decay 
rate p* (as expected UF = V(p*)  both in the pulled and pushed case), while the nonlinear 
part of the front, characterized by an amplitude of order O(1). reveals a quite oscillating 
behaviour. 

In order to determine when the nonlinear mechanism is likely to prevail against the 
linear one, we reconsider a heuristic conjecture of van Saarlos [8] for fronts propagating 
into unstable steady and homogeneous states. He observed that > UL only if the local 
growth rate of small but finite perturbations increases with their amplitude. 

In our case the linear local growth rate of perturbations is represented in the limit of 
small coupling E by the Lyapunov exponent of the single map ho, which can be defined as 

where (. . .) is the average over the invariant measure of the map. If we are interested in 
the evolution of finite disturbances A the average growth rate will be given by 

Obviously, l i i ~ + ~  Z(A) = ho. Let us first consider map (4). There, we have 

i fx  ~ [ l / r - A / 2 , l / r + A / 2 ]  -C(A,r)  
A ( x ,  A) = 

Therefore, the indicator I is given by 

where u(x) is the invariant measure. 

invariant measure is flat, so that 
The expression is more compact for the circle map, because there & = 0 and the 

This is positive for 0 < A < 1/2, and is an increasing'function at small A. Therefore at 
small but finite A we have a positive growth rate in spite of the stability against infinitesimal 
perturbations. This is always the case when we consider maps like (4), (5) or G. Conversely, 
for all the other maps we looked at (i.e. logistic and tent maps). we found Z(A) < ho for 
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all finite A-values (see figure 4). Accordingly, we can conjecture that whenever a nonlinear 
propagation mechanism has been observed, the quantity I(A) is an increasing function at 
small A. If, instead, I(A) c ho for any A, propagation in the correspondig CML will 
take place with velocity up = uL for any coupling constant E .  Nonlinear propagation of 
perturbations can arise only if finite disturbances are, on average, amplified faster than 
infinitesimal ones, i.e. by a factor t exppo] during a single iteration. 

0.3 1 

Figure 4. Nonlinearity indicator [(A) for the single maps: logistic map at the crisis (full curve); 
tent map (broken curve): circle map (5) with (I = [I - (a- 1)/21 (dotted curve); generalized 
Bmoulli shift (4) with I = 1.10 (dash-dotted curve). 

In order to give a quantitative estimate of uy we have to take into account the coupling 
between different sites. We have seen that the linear velocity is~the minimum value of 
V ( p )  which is obtained from the growth rate h(p) .  If up > UL, the exponential slope p" 
of the leading edge is larger than the value po where V ( p )  is minimal. The main effect of 
nonlinearities is to change h(p)  into a function h(p ,  A) which coincides with it along the 
leading edge of the front (where A is infinitesimal) but becomes different as A becomes 
large. Our main assumption now is that we have just to replace h(p)  with a suitable average 
over h(p,  A). The average has to be taken over the A range where I(A) t h(0) and which 
thus 'pushes' the front. 

The main problem in this assumption is that A is a fluctuating quantity. In order to 
make it practically applicable, we have to resort to a mean-field approximation. 

By assuming that the perturbation decays exponentially as 

A) = e-"'@) (19) 
from equations (2) and (3), we find that it evolves in time according to 

where 

iy = e+((1 - E ) @ ;  + $(OF-, e" + e-")). (21) 

@"+' = @"[(1 - E )  + E  cosh(p)]e"*'. 

We now introduce a mean-field approximation by assuming that 0; is independent of i, 
and A(x,  A) equal to its average over x .  This allows us to rewrite equation (20) as 

(22) 
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Performing an average over the range D of A where I(A) > h(O), we obtain an effective 
Lyapunov exponent 

and, in analogy with the linear case, 

Just like V ( p ) ,  V&) is a convex function with a unique minimum. It is thus natural to 
assume that the selected velocity for the front will be given by the minimum of (24): 

UF = minhVC(p). (25) 
The value pLe where V&) is minimal would be equal to p* if equation (19) would hold 
with the same p in the leading edge and in the pushing region. This, however, need not be 
the case and we indeed found pc < p* in general. 

Figure 5. Front velocities for circle  upl led maps as a function of the Mupling parameter 
E:  measured velocity YF (emsses) and theoretied prediction UT (circles). (a) refers to a map 
parameterrr=[1-((JS-l)/2land(b)toor=[1-((JS-1)/21/8. 
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In figure 5, the numerical results are reported together with the predictions obtained from 
equation (25) for the circle map with two different values of 01. The agreement between 
simulation and theoretical results is reasonably good for large coupling E. However, it can 
be seen that the front propagates only for E larger than a certain threshold &,(U). Equation 
(25) does not predict such a transition which can be attributed to the particular structure 
of the invariant measure for model (5) for E e E&). The invariant measure becomes 
extremely irregular below threshold and this no longer allows a ‘synchronization’ of the 
motion of the disturbances, as necessary to observe a front propagation. Obviously, this 
cannot be recovered from a mean-field analysis. An analogous comparison for map (4) 
with E = 1/3 is reported in figure 6. The overall behaviour of the velocity provided by 
equation (25) is in agreement with that of the measured UF. More precisely, the theoretical 
predictions are larger than U,. for any value of the parameter r .  

V I  

Figure 6. As in figure 5 for a coupled piecewise hear m p  with I > 1 ( E  = 1/3), In this case 
the line% velociry VI. is nlso reported (full curve). since it is positive. 

In conclusion, we have demonstrated that the propagation of perturbations in chaotic 
systems is very similar to the propagation of fronts between steady states. This includes the 
possibility of ‘nonlinear’ selection of velocity. We have verified that an extremely crude 
estimate of the influence of nonlinearities on the velocity gives surprisingly good agreement 
with simulations of several coupled map lattices. 

As a final remark, we want to point out that the velocity of the information transport is 
a fundamental ingredient for the characterization of the structure of the invariant measure in 
spatially extended systems [19]. However, the scaling behaviour of the fractal dimension is 
usually interpreted within a linear framework [20]. Clearly, when the nonlinear propagation 
mechanism prevails over the h e a r  one, this approach is no longer sufficient. Work is in 
progress in order to reveal the distinct effects, due to these two mechanisms, on the structure 
of strange attractors associated with extended systems. 
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